
KSD2 SERIES

Interval Timer

Wiring Diagram

 $R_{\scriptscriptstyle T}$ is used when external adjustment is ordered.

Description

The KSD2 Series is designed for general purpose commercial and industrial applications where a small, cost effective, reliable, solid-state timer is required. The factory calibration for fixed time delays is within 5% of the target time delay. The repeat accuracy, under stable conditions, is 0.5% of the selected time delay. This series is designed for input voltages of 24, 120 or 230VAC. Time delays of 0.1 seconds to 1000 minutes are available in 6 ranges. The output is rated 1A steady and 10A inrush. The modules are totally solid state and encapsulated to protect the electronic circuitry. An excellent choice for most OEM pulse shaping, maximum run time, and other process control applications.

Operation (Interval)

Upon application of input voltage, the time delay begins. The output energizes during the time delay. At the end of the time delay, the output de-energizes and remains de-energized until input voltage is removed.

Reset: Removing input voltage resets the time delay and the output.

Features & Benefits

FEATURES	BENEFITS	
Microcontroller based	Repeat Accuracy + / - 0.5%, + / -5% time delay accuracy	
Compact, low cost design	Allows flexiblility for OEM applications	
1A Steady solid-state output, 10A inrush	Provides 100 million operations in typical conditions.	
Totally solid state and encapsulated	No moving parts to arc and wear out over time ar encapsulated to protect against shock, vibration, and humidity	

Accessories

P1004-95, P1004-95-X Versa-Pot

Panel mountable, industrial potentiometer recommended for remote time delay adjustment.

P1023-6 Mounting bracket

The 90° orientation of mounting slots makes installation/removal of modules quick and easy.

P0700-7 Versa-Knob

Designed for 0.25 in (6.35 mm) shaft of Versa-Pot. Semi-gloss industrial black finish.

P1015-64 (AWG 14/16) **Female Quick Connect**

These 0.25 in. (6.35 mm) female terminals are

constructed with an insulator barrel to provide strain relief.

Ordering Information

•			
MODEL	INPUT VOLTAGE VAC	ADJUSTMENT	TIME DELAY
KSD2221	24	External	1 - 100s
KSD2413M	120	Fixed	3m
KSD2420	120	External	0.1 - 10s

If you don't find the part you need, call us for a custom product 800-843-8848

KSD2 SERIES

Accessories

P1015-18 Quick Connect to Screw Adapter

Screw adapter terminal designed for use with all modules with 0.25 in. (6.35 mm) male quick connect terminals.

C103PM (AL) DIN Rail

35 mm aluminum DIN rail available in a 36 in. (91.4 cm) length.

P1023-20 DIN Rail Adapter

Allows module to be mounted on a 35 mm DIN type rail with two #10 screws.

External Resistance vs. Time Delay

In Secs. or Mins.

This chart applies to externally adjustable part numbers. The time delay is adjustable over the time delay range selected by varying the resistance across the R_{T} terminals; as the resistance increases the tie delay increases

When selecting an external R_T add the tolerances of the timer and the R_T for the full time range adjustment.

Examples: 1 to 50 S adjustable time delay, select time delay range 1 and a 50 K ohn R_T . For 1 to 100 S use a 100 K ohm R_T .

Specifications

Time Delay

Range 0.1s - 1000m in 6 adjustable ranges or fixed Repeat Accuracy ±0.5% or 20ms, whichever is greater

≤ ±10%

Tolerance

(Factory Calibration) ≤ ±5% **Reset Time** ≤ 150ms

Time Delay vs. Temperature

& Voltage

Input

Voltage 24, 120, or 230VAC

Tolerance ±20% **AC Line Frequency** 50/60 Hz **Power Consumption** $\leq 2VA$

Output

Type Solid state

Form NO, closed during timing

Maximum Load Current 1A steady state, 10A inrush at 60°C

≅ 5mA @ 230VAC **OFF State Leakage Current Voltage Drop** ≈ 2.5V @ 1A

Protection Circuitry Encapsulated

Dielectric Breakdown ≥ 2000V RMS terminals to mounting surface

 \geq 100 M Ω **Insulation Resistance**

Mounting Surface mount with one #10 (M5 x 0.8) screw

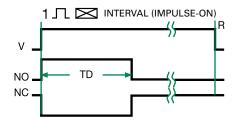
H 50.8 mm (2"); **W** 50.8 mm (2"); **Dimensions**

D 30.7 mm (1.21")

0.25 in. (6.35 mm) male quick connect **Termination**

terminals

Environmental


Mechanical

Operating/Storage

-40° to 60°C / -40° to 85°C **Temperature** Humidity 95% relative, non-condensing

Weight $\approx 2.4 \text{ oz } (68 \text{ g})$

Function Diagram

V = Voltage

NO = Normally

Open Contact

NC = Normally

Closed Contact TD = Time Delay

R = Reset

= Undefined Time